HALOALKANES AND HALOARENES

title by creation of the chief is more reactive than chlavebearance?

des theoreters of the takes (Chemistry)-

error that the tree tends

. And the best of the filter the state of the te dealed be

PREVIOUS YEARS' QUESTIONS

2019

Very Short Answer Type Questions [1 Mark] The Short Answer Type Questions [1 Mark]

1. Why is t-butyl bromide more reactive towards S_N^1 reaction as compared to n-butyl bromide? [AI Uttarakhand]

Ans. It is because t-butyl carbocation is more stable than n-butyl carbocation.

2. Define ambidient nucleophile with an example.

[Delhi]

Ans. Ambidient nucleophiles: Those nucleophiles which can form bond through either of the two atoms are called ambident nucleophiles, e.g. CN⁻ can link through 'C' or 'N' to form cyanide or isocyanide as follows:

$$C_2H_5Cl + KCN \longrightarrow C_2H_5C = N + KCl$$

 $C_2H_5Br + AgCN \longrightarrow C_2H_5N = C + AgBr$

3. Write IUPAC name of the given compound:

[Delhi]

Ans. 4-Chlorobenzene sulphonic acid.

4. Write one stereochemical difference between S_N^1 and S_N^2 reactions. [Delhi]

Ans. In S_N^{-1} , racemisation takes place, whereas in S_N^{-2} mechanism stereochemical inversion (optical inversion) takes place.

5. Why is $CH_2 = CH - CH_2 - Cl$ more easily hydrolysed than $CH_3 - CH_2 - Cl$?

[AI Chennai]

Ans. It is because $CH_2 = CH - \overset{\oplus}{C}H_2 \longleftrightarrow \overset{\oplus}{C}H_2 - CH = CH_2$, allyl carbocation is stabilized by resonance more than $CH_3 - CH_2 - \overset{\oplus}{C}H_2$ by inductive effect.

6. Why is cyclohexyl chloride is more reactive than chlorobenzene?

[CBSE]

- Ans. It is because in chlorobenzene there is double bond character between C—Cl bond which has higher bond dissociation energy than C—Cl, in cyclohexyl chloride, 'C' is sp^3 hybridised whereas 'C' is sp^2 hybridised in chlorobenzene.
 - 7. Why is chloroform stored in dark coloured bottle?

[AI Panchkula]

Ans. It is because chloroform reacts with oxygen in the presence of sunlight to form phosgene gas which is poisonous.

$$CHCl_3 + \frac{1}{2} O_2 \xrightarrow{Sunlight} COCl_2 + HCl$$
Chloroform
Phosgene

8. What are the products of exhaustive ammonolysis of alkyl halide? [AI Chandigarh]

Ans.
$$CH_3Cl \xrightarrow{NH_3} CH_3NH_2 \xrightarrow{CH_3Cl} (CH_3)_2NH \xrightarrow{CH_3Cl} (CH_3)_3N \xrightarrow{CH_3Cl} (CH_3)_4N^+Cl^-$$

Long Answer Type [I] Questions [3 Marks]

- 9. (i) Out of $(CH_3)_3C$ —Br and $(CH_3)_3C$ —I, which one is more reactive towards S_NI and why?
 - (ii) Write the product formed when p-nitrochlorobenzene is heated with aqueous NaOH at 443 K followed by acidification.
 - (iii) Why dextro and laevo rotatory isomers of Butan-2-ol are difficult to separate by fractional distillation? [Delhi]
- Ans. (i) (CH₃) C—I will be more reactive because C—I has lower bond dissociation enthalpy than C—Br bond, due to longer bond length.

(ii)
$$+ \text{NaOH} \xrightarrow{443\text{K}} \longrightarrow \text{NO}_2$$
 $\rightarrow \text{NO}_2$ $\rightarrow \text{NO}_2$

- (iii) It is because they do not differ appreciably in their boiling points (physical properties), but differ in optical rotation and biological properties.
- 10. (i) Out of \bigcirc —Cl and \bigcirc —CH₂—Cl, which one is more reactive towards S_N^2 reaction and why?
 - (ii) Out of Cl and O_2N —Cl, which one is more reactive towards S_N^2 reaction and why?
 - (iii) Out of OH and OH, which one is optically active and why?

 [AI Chennai]

Ans.

(i) CH₂Cl because it is primary halide and has less stearic hinderance.

is more reactive because —NO₂ being electron withdrawing stabilizes intermediate negatively charged ion.

(iii) is optically active because it has chiral 'C' atom (asymmetric carbon).

11. Give reasons for the following:

- (a) The presence of —NO₂ group at ortho or para position increases the reactivity of haloarenes towards nucleophilic substitution reactions.
- (b) p-dicholorobenzene has higher melting point than that of ortho or meta isomer.
- (c) Thionyl chloride method is preferred for preparing alkyl chloride from alcohols.

 [AI Uttarakhand]

Ans. (a) —NO₂ group stabilises intermediate having –ve charge, therefore, increases rate of nucleophilic substitution reactions.

- (b) It is because p-isomer is symmetrical and fits into crystal lattice readily.
- (c) It is because side products formed are SO₂ and HCl gases, which can be easily removed to get pure alkyl halide.

12. Among all the isomers of molecular formula C₄H₉Br, identify:

- (a) the one isomer which is optically active.
- (b) the one isomer which is highly reactive towards S_N^2 .
- (c) the two isomers which give same product on dehydrohalogenation with alcoholic KOH.

Ans.

(a) CH₃—CH—CH₂—CH₃ is optically active due to presence of chiral 'C' atom.

- (b) CH₃—CH₂—CH₂—CH₂Br is highly reactive towards S_N2 because it is primary halide and it has less steric hinderance.
- (c) CH_3 —CH— CH_2Br + KOH (alc.) \longrightarrow CH_3 —C— CH_2 + KBr + H_2O CH_3

1-Bromo-2-methyl propane

2-Methyl propene

$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

2-Bromo-2-methyl propane

2-Methyl propene

- (a) Out of chloro cyclohexane and chlorobenzene which one is more reactive towards 13. nucleophilic substitution reaction and why?
 - (b) Predict all the alkenes that would be formed by dehydrohalogenation of 2-bromobutane.
 - (c) Chloroform contains chlorine but it does not give white ppt with AgNO3 solution, why?
- (a) Cyclohexyl chloride is more reactive due to partial double bond character of Ans. C----Cl bond in chlorobenzene due to resonance, it is sp^2 hybridised where as in cyclo hexyl chloride, there is single bond, sp^3 hybridised.

(b)
$$CH_3$$
— CH — CH_2 — CH_3 + $KOH(alc.)$ $\xrightarrow{\Delta}$ CH_3 — CH = CH — CH_3

But-2-ene (major)

+ CH_2 = CH — CH_2 — CH_3

- (c) It is because all chlorine atoms are bonded to carbon atom by covalent bond.
- 14. (a) Out of (\cdot Cl and \langle CH₂Cl, which one is more reactive towards S_N2 (b) It is occause p-isomer is symmetrically reaction and why?
 - (b) Out of --Cl, which one is more reactive towards nucleophilic substitution reaction and why? Among all the isomers of mole
 - , which one is optically active and why?

Ans. (a) Refer Ans. to Q.10 (i). (b) Refer Ans. to Q.10 (ii) (c) Refer Ans. to Q.10 (iii).

- (a) Define the following:
 - (i) Enantiomers (ii) Racemic mixture
 - (b) Why is chlorobenzene resistant to nucleophilic substitution reaction?
- [AI Chandigarh] Those stereoisomers which are non-super imposable but not mirror images of Ans. (a)each other are called enantiomers.
 - (ii) Racemic mixture: Equimolar mixture of 'd' and 'l' form is known as racemic mixture.
 - (b) It is due to double bond character between C-----Cl bond which is difficult to break and phenyl cation is unstable.